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Abstract

The risks associated with exposure to radiation make it critical that digital-

imaging systems give the best possible images for a given dose to the patient. The

DQE is the most widely accepted measure of performance and dose efficiency for

digital radiography systems, however it is not commonly measured in a clinical en-

vironment as part of routine quality assurance. The primary reason for this is that

the data provided to the user by clinical systems has typically undergone image-

processing and therefore may have a non-linear characteristic response. In this thesis

a method to measure the DQE using processed image data is presented using a novel

theoretical approach to the linearization of the system characteristic response. The

method was validated on cesium iodide-based digital radiography flat panel detector

and the results where within a few percent of a conventional DQE measurement.

Keywords: x ray, quality assurance, detective quantum efficiency, digital radio-

graphy, performance, linear-systems theory, small-signal, noise, modulation transfer

function, non-linear

iii



Co-Authorship

This thesis contains material from a manuscript to be submitted for publication. I

was responsible for theoretical development, collection of experimental data, analysis

and interpretation of data, and preparation of the manuscript. These tasks where

performed under the supervision and guidance of I.A. Cunningham, who assisted with

theoretical development and edited the manuscript. H.Y. Kim contributed ideas to

the theoretical development.

iv



Acknowledgments

I would like to acknowledge the support of the following people who helped me on

the way to successfully completing this thesis.

� My supervisor: Dr. Ian Cunningham. This project would have been impossible

without the guidance he provided. Although he was sometimes hard on me, I

am better for it.

� My advisory committee: Dr. Grace Parraga, Dr. David Holdsworth. for their

helpful advice and suggestions.

� Other collaborators: John Henry of the London Health Sciences Center for

assistance with equipment and experiments. Prof. Ho-Kyung Kim of Pusan

National University, South Korea for his helpful insights and discussions.

� My lab colleagues Jesse Tanguay, Christian Dihel and Seugmen Yeun, for ca-

maraderie and support.

v



Contents

Certificate of Examination ii

Abstract iii

Co-Authorship iv

Acknowledgments v

List of Tables viii

List of Figures ix

List of Abbreviations and Acronyms xi

List of Symbols xiii

1 Introduction 1
1.1 Biological Effects of Ionizing Radiation . . . . . . . . . . . . . . . . . 2
1.2 X-Ray Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 X-Ray Detector Performance . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Image Quality and Dose . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Quantum Efficiency . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Detective Quantum Efficiency . . . . . . . . . . . . . . . . . . 6
1.3.4 Linear Systems Analysis . . . . . . . . . . . . . . . . . . . . . 8
1.3.5 MTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.6 Wiener Noise Power Spectrum . . . . . . . . . . . . . . . . . 9
1.3.7 NEQ and DQE . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Non-Linear Systems and the DQE . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Linearization Approach . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Small-Signal Approach . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Quality Assurance and the DQE . . . . . . . . . . . . . . . . . . . . . 14
1.6 Research Problems and Objectives . . . . . . . . . . . . . . . . . . . 15
1.7 Implications for Clinical Quality Assurance . . . . . . . . . . . . . . . 16

vi



2 A method to measure the DQE in a clinical setting 22
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Linearizing System Response: the Neutral-Attenuator Method 25
2.2.2 Linearized Small-Signal (LSS) MTF . . . . . . . . . . . . . . . 26
2.2.3 Linearized Small-Signal DQE . . . . . . . . . . . . . . . . . . 27

2.3 Detector Glare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Linearizing System Gain . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Small-Signal MTF . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.3 Linearized Small-Signal MTF . . . . . . . . . . . . . . . . . . 33
2.4.4 NPS and DQE . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 System Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2 Small-Signal MTF . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.3 Linearized Small-Signal MTF . . . . . . . . . . . . . . . . . . 37
2.5.4 NPS and DQE . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.5 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.1 System Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.2 MTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.3 NPS and DQE . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.4 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Conclusions and Future Work 49
3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.1.1 Glare . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.1.2 Scatter . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.1.3 Image-Processing . . . . . . . . . . . . . . . . . . . . 52

3.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Glare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . 54

Curriculum Vitae 56

vii



List of Tables

2.1 The error in MTF due to scatter is calculated as a function of edge-

detector distance for a .004” (0.1016 mm) copper edge. This is a worst

case scenario, where the assumption is that S(u > 0) = 0. For the error

in MTF due to scatter to be less then 1% the edge must be placed >200

mm from the detector cover. . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Fractional change in DQE values relative to a change in each parameter

x. The third column shows the required accuracy of each parameter

to ensure a maximum 2% effect on the DQE. . . . . . . . . . . . . . 42

viii



List of Figures

2.1 Linearization of the system from initial response, to linearized response

for (a) a linear system with glare and (b) a hypothetical non-linear

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Images of a copper step wedge and corresponding profiles of pixel val-

ues. Three different protocols are shown: raw (linear), abdominal-

AP (LEdge=7), and the custom setting used in these experiments

(LEdge=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Scatter-to-primary ratio for copper shim as a function of attenuator

distance from detector cover for the thicknesses shown. . . . . . . . . 32

2.4 Comparison of normalized theoretical Êq(t) values with normalized
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Ê keV mm−2 area density of deposited energy

Eq keV average energy deposited per incident x-ray

photon

Ea(E) keV average x-ray energy deposited in the detector by

a photon having energy E

xiii



Symbol Units Description

f() - system characteristic function

f−1
q - linearizing transformation

G mm2 system gain

Gs mm2 gain determined using the LSS method

Gg mm2 gain component due to glare

kL - constant of proportionality

k - constant of proportionality

K() mm2 two dimensional auto-covariance function

N̄ average number of detector incident quanta

NEQ() mm−2 noise-equivalent quanta

NPS() mm2 Weiner noise power spectrum

ρ g cm−3 density

q mm−2 quanta per unit area incident on the detector

Qo mm2/mR number of x ray quanta in the beam per unit exposure

s(E) - normalized x ray spectrum

S(u) - normalized scatter point-spread function

SNR signal-to-noise ratio

TS(u) - MTF measured using the semi-transparent edge method

TL(u) - linearized small-signal MTF

T() - modulation tranfer function

xiv



Symbol Units Description

T(, ) - two-dimensional system transfer function

t cm attenuator thickness

τy mm distance between two points in x

τx mm distance between two points in y

µ() cm−1 linear attenuation coefficient

u mm−1 spatial frequency

u mm−1 spatial frequency corresponding to x

v mm−1 spatial frequency corresponding to y

γ - edge-scatter-to-primary ratio

W(u) mm2 image Wiener NPS

Wq̄(u) mm−2 Wiener NPS of the incident Poisson-distributed quanta

WL(u) mm2 linearized small-signal Wiener NPS

X mR exposure incident on the detector

x - system input

y - system output

xv



Chapter 1

Introduction

X-ray imaging is an invaluable tool to medical practitioners in the assessment of

disease and injury. Today, x-ray radiography (and related x-ray based methods in-

cluding computed tomography, fluoroscopy and mammography) are collectively the

most widely used modalities for medical imaging with 138 million x-ray procedures

performed globally every year [1]. While medical imaging provides a non-invasive way

of examining internal anatomy, x rays are a form of ionizing radiation and therefore

are believed to present a carcinogenic risk to the patient [2].

Given these risks of x-ray exposure, it is essential that the benefits to the patient

of the imaging procedure outweigh the costs in terms of biological risk. The principle

of ALARA (As Low As Reasonably Achievable) is observed for imaging procedures [3]

and requires that patient equivalent dose be minimized as much as possible without

compromising necessary diagnostic benefits of the examination. Although it is desire-

able to keep patient exposures as low as possible to minimize risks from exposure to

radiation, the statistical nature of x-ray interactions results in image noise when too

few x-ray photons are used to create the image. This has been understood since the

pioneering work of Albert Rose [4, 5] and others, and means there is a fundamental

trade-off between patient dose (number of quanta) and image quality. To achieve an

1
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optimal balance, it is critical that x-ray detectors be designed and maintained to pro-

duce the best possible image quality for a given radiation exposure. Unfortunately,

not all x-ray systems provide patients with the benefits of optimal image quality for

a given exposure, particularly for the visualization of small structures and fine detail.

A metric called the detective quantum efficiency (DQE) describes how close a

detector is to the optimal balance of image quality and exposure. While the DQE is

widely accepted by scientific communities [6], it is until now been difficult or impossi-

ble to measure in a clinical envirnoment. Thus, while regulatory agencies (in Ontario

this is the Healing Arts Radiation Protection Act) mandate allowable patient expo-

sures for standard examinations, we do not know whether we are getting the best

possible images for these exposures. We believe the only way of ensuring optimal

image quality and low patient exposures in medical radiography is to measure the

DQE of clinical imaging equipment as part of routine quality assurance testing, so

that corrective action can be taken when indicated. The objective of this research

is to develop a method of measuring the DQE that can be implemented in a clinical

environment.

1.1 Biological Effects of Ionizing Radiation

X-ray photons interact with matter by one of several physical mechanisms. In the

diagnostic energy range (approximately 20 to 120 keV) these are photoelectric in-

teractions, incoherent (Compton) scatter and coherent (elastic) scatter. For medical

imaging purposes, a very important contrast forming interaction is the photoelectric

mechanism in which an inner-shell electron atom is liberated by an incoming x-ray

photon of sufficient energy [7], causing the emmission of a characteristic x-ray. For

soft tissues, these characteristic emmissions have a low energy and are readily ab-

sorbed by nearby tissues. The liberated electrons will impart their kinetic energy to
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the surrounding medium, producing free radicals with subsequent carcinogenic and

hereditary effects [8].

The concept of absorbed dose is used to quantify how much energy is imparted

to the medium by ionizing radiation and is measured in Joules per kilogram [J/kg],

with units of Gray (Gy). Different types of of ionizing radiation have different effects,

and therefore the concept of equivalent dose is used to quantify the biological risk

associated with a particular type of radiation and is measured in Sieverts [Sv]. The

equivalent dose is defined as the absorbed dose multiplied by a quality factor that

weights the biological effectiveness of the radiation type (for x-rays the quality factor

is unity).

X-ray imaging procedures are typically targeted to a specific area of the body

where the biological effects of ionizing radiation vary depending on the type and

volume of tissue being irradiated. The concept of effective dose is used to determine

the equivalent dose to a uniformly exposed body that has the same biological risk as

a non-uniform exposure of a particular area. It is calculated as the equivalent dose

multiplied by a quality factor that weights the relative biological risks for the type of

tissue. For instance, a dose of 70 mSv (typical for a chest CT [9]) to the lungs has a

weighting factor of 0.12 [3], and therefore has a whole body effective dose of 8 mSv.

It has been found that the lifetime risk of fatal cancer varies between approximately

3% and 5% per Sievert depending on the individuals’ age and the pattern of exposure

[10].

1.2 X-Ray Detectors

Although there are a great number of technologies for the detection of x rays, the

focus of this work is principally with application to digital systems used for diagnostic

radiography. Discussions of other methods of x-ray detection, such as film-screen
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technologies, will be omitted.

X-ray detectors in general radiography can be classified in two categories: direct

and indirect detection systems. In direct detectors, x-ray interactions occur in a

photoconductive layer (typically selenium) that is sandwiched between two electrodes

and biased at high voltage. X-ray interactions in the selenium cause charge to be

released which migrates to the electrodes where the total accumulation is measured

[7].

In indirect detectors, a scintillating layer is employed that converts interacting

x rays to optical photons and couples them to a thin-film transistor (TFT) array.

Commonly used materials for the scintillator are gadolinium oxysulfide (Gd202S) for

unstructured types and cesium iodide (CsI) based for structured scintillators. A sub-

type of these indirect detectors are the photostimulable phosphor detectors which is

the technology employed in modern computed radiography (CR) systems. Typically,

a plate containing a layer of (most commonly) barium fluorohalide activated with

europium ions (BaFX:Eu) [11] is exposed to x rays causing energy to be stored in

excited electrons. The plate is then stimulated by a laser that causes release of energy

and emission of visible light [12].

In both direct and indirect systems, x rays interact imparting energy to the detec-

tor material. Therefore the output “signal” of a detector is proportional to the total

energy deposited in the detector element over the period of time in which the x-ray

exposure is in progress [13]. Because of this, these detectors are sometimes called

“energy integrating” detectors.

1.3 X-Ray Detector Performance

The different x-ray imaging systems in use each have different advantages and disad-

vantages. An understanding of the merits of each system requires an objective metric
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of image quality and detector performance. For digital radiography, the two primary

considerations are dose to the patient and image quality [14]. The detective quantum

efficiency (DQE) is the most widely accepted metric that encapsulates these two con-

siderations [6]. It is an objective measure of detector performance and describes, on

an abolute scale, the “dose efficiency” of the detector relative to a carefully defined

ideal. In this section, the concepts of image quality, dose, and DQE are presented.

1.3.1 Image Quality and Dose

Image quality in x-ray imaging is ultimately dependant on the signal-to-noise ratio

(SNR) [15]. Due to the nature of the way x rays are produced and arrive at the

detector, that is, by the random emission of x ray photons from the source and subse-

quent detection according to Poisson statistics, the x-ray beam itself can be thought

of as having an intrinsic signal-to-noise ratio given by SNR = N̄/σN =
√
N̄ , where

N̄ is the average number of incident photons and σN =
√
N̄ for a Poisson random

variable. The statistical variation in the number of detected quanta is known as

“quantum noise” and imposes a fundamental upper limit of signal-to-noise ratio, and

therefore image quality, that can be achieved with the detector. A greater number of

quanta results in higher SNR, but generally at a higher dose. This is the fundamental

trade-off between radiation dose and x-ray image quality.

1.3.2 Quantum Efficiency

The SNR will be degraded if not all incident x-ray photons interact in the detector.

The quantum efficiency (QE) is the fraction of photons in the incident x-ray beam

that interact in the detector materials [16], and is therefore the probability that

photons will interact in the detector and an important metric of performance. For a

CsI-based detector exposed to a standardized RQA-5 (70kV, 21mm Al) spectrum [17]

and a 0.5-mm thick layer of CsI, this value is approximately 0.53 [18]. The QE can be
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increased by increasing the thicknesses of the detection layer. However, this must be

balanced with numerous other design considerations such as system resolution which

generally degrades as detector thickness increases [19]. While one might expect those

detectors with the highest QE to produce images with the highest SNR for a given

dose, reality is generally more complex.

1.3.3 Detective Quantum Efficiency

In practice, other physical processes in the detector may reduce the SNR futher. The

concept of detective quantum efficiency (DQE) is used to describe SNR in terms of

an effective or equivalent quantum efficiency. The idea originated in the early work

of Shaw[20] and is an extension of the work of Albert Rose [4, 5]. The “equivalent

quantum efficiency” described by Shaw [20], now called the detective quantum effi-

ciency, is the effective fraction of x-ray quanta contributing to image signal-to-noise,

and thus is analogous to the QE but takes in to account additional noise introduced

by the detector. The DQE is properly considered as a function of spatial frequency.

However, in order to faciliate an understanding of the concept, it is helpfull to first

consider a simplified “particle-based” explanation of the DQE.

Consider a hypothetical ideal detector that introduces no noise of its own. For this

detector the output signal is directly proportional to the number of (mono-energetic)

quanta that interact in the detector:

d̄ = kαN̄, (1.1)

where d̄ is the detector signal (typically a digital value), k is a constant of pro-

portionality, and α is the QE of the detector. Noise is defined as the statisitcal fluc-

tuations in the detector signal. For an amplification process by the binary random

variable α [21]:
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σ2
d̄ = k2

[
α2σ2

N̄ + N̄σ2
α

]
= k2αN̄. (1.2)

The detector signal-to-noise ratio (SNR) is therefore given by:

SNRd =
d̄

σd̄
=

kαN̄

k
√
αN̄

=
√
αN̄. (1.3)

Images are generally scaled by an arbitrary factor for display, and hence absolute

signal values have little meaning. To address this problem, the concept of the noise

equivalent quanta (NEQ) [20] was developed to express image SNR in terms of a

number of Poisson distributed quanta interacting in an ideal detector that gives the

same SNR as is actually observed. For the ideal system considered here, this is equal

to the number of interacting quanta:

NEQ = αN̄ = SNR2
d. (1.4)

For a real detector, the NEQ is generally less than αN̄ due to noise added by

the detector, such as amplifier electronic noise. The ratio of NEQ to the number of

incident quanta is the DQE and is a measure of detector performance to capture the

fundamental SNR of the beam. For the ideal system, the DQE is expressed as:

DQE =
NEQ

N̄
= α. (1.5)

While the NEQ describes image quality, the DQE is a measure of system perfor-

mance. The DQE will never exceed the system QE, and will be less for a non-ideal

system. The DQE is therefore a measure of “image quality per incident x-ray quan-

tum” and is therefore a surrogate measure of the system’s dose efficiency.

The simple description of DQE detailed in this section is helpfull to the under-

standing of the concept. However, it assumes that noise in the detector is spatially
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uncorrelated, an assumption that breaks down in real imaging systems where physical

processes can introduce statistical correlations in image signals from the scatter of x

rays, secondary image quanta in the detector system, and possibly electronic noise

[22]. These factors have the effect of altering the visual texture of noise, which affects

what can be seen in an image [23], without necessarily affecting the variance mea-

surement. It is therefore necessary to specify the DQE in a way that quantifies the

statistical correlations that may exist. To do this requires the use of Fourier trans-

form [24] based metrics, specifically the concepts of noise power spectrum (NPS) and

modulation transfer function (MTF). Both of these concepts emerge from an area of

mathematics known as linear systems analysis.

1.3.4 Linear Systems Analysis

To be amenable to Fourier analysis, a system must have a linear characteristic re-

sponse [25]. That is, the system output quantity must be proportional to the system

input quantity. In x-ray imaging, that requires

d̄ = kq̄, (1.6)

where k is a constant of proportionality. In addition, Fourier analysis requires

a shift-invariant system, which means that the system point spread function (PSF),

which is the impulse response of the system, is independent of the physical location

of measurement in the image plane [25].

1.3.5 MTF

The modulation transfer function (MTF), is defined as the modulus of the Fourier

transform of the normalized system point-spread function (PSF) [26]:
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MTF(u, v) =

∣∣∣∣F { PSF(x, y)˜
PSF(x, y)dxdy

}∣∣∣∣ (1.7)

where F{ } indicates the Fourier transform, F {PSF(x, y)} is the system two-dimensional

transfer function T(u, v), and by the Fourier central ordinate theorem,
˜

PSF(x, y)dxdy =

T(0, 0). Thus, the MTF may equivalently be defined as T(u, v) normalized by T(0, 0).

The MTF describes the change in amplitude (scaling) of sinusoidal waveforms passing

through an imaging system. For many imaging systems, the MTF contains enough

radial symmetry that it is only necessary to express it along the two orthogonal x

and y (u and v) directions.

1.3.6 Wiener Noise Power Spectrum

The Wiener noise power spectrum (NPS) [27] is defined as the Fourier transform of

the auto-covariance function which describes the statistical correlation of a signal at

two image positions separated by a finite distance [28], i.e.

NPS(u, v) = F {K(τx, τy)} (1.8)

where

K(τx, τy) = lim
X→∞

lim
Y→∞

1

XY

ˆ
X

ˆ
Y

∆d(x′, y′)∆d(x′ + τx, y
′ + τy)dx

′ dy′ (1.9)

is the auto-covariance function, and τx and τy are the distance between points on

the respective axes, and ∆d = d − d̄. In using NPS to characterize noise, it is

assumed that the noise processes are wide-sense stationary, that is, the mean value

and auto-correlation functions are stationary (shift invariant) across the image. The

NPS describes second-order statistics of the image noise and is related to the variance

by [29]:
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σ2 =

∞̈

−∞

NPS(u, v)dudv. (1.10)

The NPS can therefore be viewed as the decomposition of the variance into spatial

frequency components.

1.3.7 NEQ and DQE

The noise equivalent quanta, as in the particle based approach, is an expression of

image SNR in terms of a number of x ray quanta incident on an ideal system. In the

frequency domain, this is expressed as [22]:

NEQ(u, v) =
q̄2G2MTF2(u, v)

NPS(u, v)
(1.11)

where q̄ [mm−2] is the number of quanta per unit area incident on the detector and G

[mm2] is the system gain. The gain is the slope of the system characteristic response

which is the ratio of system output (dark-subtracted pixel value d̄) to system input,

q̄, i.e. G = d̄/q̄. Therefore,

NEQ(u, v) =
d̄2MTF2(u, v)

NPS(u, v)
. (1.12)

The DQE is the effective fraction of input quanta that contribute to image formation:

DQE(u, v) =
NEQ(u, v)

q̄
=
d̄2MTF2(u, v)

q̄NPS(u, v)
(1.13)

and is therefore an expression of the performance of the system in terms of a ratio of

what an image is worth in terms of quality (NEQ) to what it cost in terms of a number

of x-ray quanta (q̄). The DQE can be determined experimentally by measuring the

following three quantities [17, 30]:

1. MTF(u), the one-dimensional (pre-sampling) modulation transfer function in
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the x direction using a slanted edge method [31];

2. NPS(u)/d̄2, the one-dimensional Wiener NPS in the x direction normalized by

the mean dark-corrected pixel value in images of uniform x-ray exposure; and

3. q̄, the mean number of x-ray quanta per unit area incident on the detector.

The importance of the DQE as a primary metric of performance is widely accepted

in scientific and regulatory communities. For example, the US Food and Drug Ad-

ministration (FDA) requires manufacturers to provide MTF and DQE information

on new products with 510(k) pre-market notifications.

1.4 Non-Linear Systems and the DQE

Equation 1.13 is the normal expression for the DQE of a linear imaging system. In

practice, many systems exhibit a non-linear response due to the result of a deliberate

application of image-processing algorithms, electronically manufactured, or inherent

to the detector technology that’s being employed [32]. In addition, many systems

incorporate automatic exposure control and other features that depend on certain

patient features or exposure conditions [33]. The result is that processing parameters,

and hence the characteristic response of the system, may be adaptive and vary from

one exposure to another, and possibly from one region to another in a single image.

An example of a non-linear system in widespread use is computed radiography

(CR), which typically has an electronically manufactured logarithmic response in

order to mimic film-screen systems. Many modern CR and digital radiography (DR)

systems are also non-linear in that they employ image processing where linear data is

processed by software to provide features such as window/level adjustments, reverse

contrast mapping, histogram equalization, edge enhancement, dynamic range control,

and noise control [34]. Seibert [14] described a typical image-processing sequence as
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consisting of several distinct steps: In the first step, maximum and minimum values

in the image are identified, the image histogram is then shifted and scaled to an

appropriate range of brightness and contrast values. This insures that both over- and

under-exposed images are mapped to a consistent range of values. Noise suppression

is often implemented at this stage by applying spatial smoothing techniques [35] in

areas of constant intensity in the image. The next step is the application of non-linear

transformations to provide procedure-specific contrast enhancement, or to change the

appearance in order to mimic film-screen. The last step is to apply techniques such

as unsharp masking [36] in order to enhance the appearance of image edges. This

compensates for the inherent detector unsharpness as well as other mechanisms that

cause blurring such as finite-focal spot.

Image processing cannot add new information to the image. However, it can in-

crease the diagnostic value of the image by allowing the information that is there

to be more readily perceived [37]. In addition, image processing provides a familiar

“look” and other improvements to the appearance of the images, however the non-

linearity, and in particular non-linear processing which is adaptive to exposure and

image conditions makes it difficult or impossible to measure the DQE using conven-

tional methods.

Several investigators have reported DQE measurements for non-linear systems.

These studies where limited to either CR systems with an electronically manufactured

logarithmic response and image processing disabled, [38, 39, 40, 18] or film/screen

systems [41, 42]. The objective of these studies was to measure the DQE of these

detectors but not specifically to devise a general method to measure DQE that can be

applied to any system, thus the methods used therein are limited in their applicability

to those types of systems considered. Stierstorfer and colleagues [43] used small-signal

analysis to develop a method with the objective of greater generality, however their

method also has certain shortcomings as considered in the following two sections.
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1.4.1 Linearization Approach

If the system characteristic response of a system was known for instance as a function

of some measurable quantity proportional to deposited energy, such as x-ray exposure,

it would be possible to transform measured pixel values to values that are proportional

to deposited energy. This effectively linearizes the system response and makes it

possible to measure DQE using conventional methods. This idea has been employed

successfully in numerous studies of non-linear systems [42, 38, 39, 40, 18, 41]. The

technique involves mapping the system output as a function of image plane exposure

by variation of x-ray tube output for a fixed spectrum. An obvious requirement for

this to be successful is that the response of the system must remain fixed. This can be

guaranteed for film/screen systems and CR systems with image-processing disabled.

However, many systems implement proprietary image-processing that is not disclosed

and cannot be disabled. For these systems this requirement can not be guaranteed.

1.4.2 Small-Signal Approach

Stierestorfer and colleagues [43] described a novel method using small-signal methods

to measure the DQE on a wide variety of non-linear systems. In their approach,

images of a semi-transparent line pair test pattern are used to measure a form of

system modulation. The semi-transparency of the test pattern insures that a globally

linear response is not required but rather a behavior that is linear only in the small-

signal approximation. The measurement can be made from a single image containing

the test pattern and a uniformly exposed area to measure the NPS, circumventing

the problem of adaptive processing. This is an impressive accomplishment and it was

shown to work on a CR test system, however there are circumstances where this may

be ineffective. One problem is that if a system implements edge-enhancement, it will

not be possible to get an accurate measurement of the system modulation using the

test pattern method. Also problematic is that the magnitude of noise fluctuations
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are not always sufficiently small to assume small-signal linearity, thus an error can be

incurred in the measurement of the NPS.

Due to the shortcomings noted in the above approaches, the current methods to

measure DQE of non-linear systems are not adequate in all situations.

1.5 Quality Assurance and the DQE

Regular quality assurance (QA) is an essential part of proper maintenance and en-

suring the system is running at optimal performance. Having adequate quality assur-

ance methods is essential to the performance of many tasks such as constancy testing

(monitoring performance over time), acceptance testing (assuring the adequate per-

formance of newly installed equipment), and end of life decision making. Publications

by major national bodies: the Association of Physicists in Medicine (AAPM) in the

United States, and the Institute of Physics and Engineering in Medicine (IPEM) in

the UK, have extensive recommendations for the quality assurance of radiographic

systems [44, 45, 46]. These recommendations focus on the maintenance of the x-ray

equipment (e.g. generator, tube) within an acceptable range of operating parame-

ters, and some tests of the detector such as sensitivity, image sharpness, low-contrast

detectability, uniformity, dark noise, etc. However, these tests are mainly qualitative

and subjective in nature. The DQE is the most widely accepted objective measure of

performance and dose efficiency for digital radiographic detector systems [6], and the

only metric that describes how close a detector’s performance is to scientifically-based

ideal. However, DQE measurements are not currently used as a part of any (known)

routine quality assurance program. There are two technical reasons for this. The

first is that the conventional method to measure the DQE as described in the IEC

(International Electrotechnical Commission) 62220-1 [17] standard, is a complex test

that requires time, specialized equipment, and a great deal of expertise in analysing
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and interpreting the data that’s obtained. The second, and most serious reason, is

that it is not always easy (or even possible) to obtain linear data from the multitude

of imaging system types in clinical use. At the time this thesis was written, a NEMA

(National Electrical Manufactures Association) standard is under development that

will require manufacturers who subscribe to provide a test mode on their equipment

in which proprietary adaptive noise-suppression algorithms can be disabled. This

is an important development and recognition of the need to perform proper quality

assurance tests. In addition, it is the only condition required for the method of DQE

testing developed in this thesis. As a result, the new method described here can be

widely adopted for use in clinical environments.

1.6 Research Problems and Objectives

Whether it is result of image processing, or other mechanisms, non-linear image data

is a fact of life in the clinical environment. This is the primary impedance to the

adoption of DQE measurements in the clinical environment for quality assurance

purposes.

Measuring the DQE on clinical systems necessitates an approach that is robust

enough to handle the numerous transformations that manufacturers apply. The ap-

proaches noted above are important steps towards this objective. However the work

described above has also highlighted the important limitations of these approaches.

Any method to measure DQE that is useable on the broadest spectrum of x-ray imag-

ing detectors must be applicable in the presence of edge-enhancement, and adaptive

non-linear algorithms. After careful consideration of the problem, it is believed that

such a method must have the following characteristics:

1. linearization of image data without any foreknowledge of the system character-

istic response;
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2. derived from images of stationary test objects only, required to ensure that

adaptive algorithms or exposure controls do not vary exposure parameters from

one image to the next; and

3. derived from images containing only low-contrast test phantoms.

The first characteristic is necessary because the response is usually proprietary and not

known at the time of measurement. The reason for the second characteristic is slightly

less obvious, but it is because with constant exposure conditions and unchanging

images, adaptive algorithms will not be “provoked” in to changing the system response

inter-image. The use of only low-contrast attenuators insures that if the form of the

response is such that exposures below a certain threshold are truncated to zero (e.g

log), the measurements will not be affected.

The objective of this thesis is to develop a experimental technique that implements

these characteristic and is therefore able to measure DQE on the broadest range

of detectors possible. This will permit DQE measurements to made in a clinical

environment where linear data is not provided and allow the DQE to be used in

quality assurance programs for the reasons described in the previous section. If the

method is successful at accurately measuring the DQE from image data that has been

processed it will provide further validation of the DQE as a robust measure of system

performance, and an ideal candidate for use in regular quality assurance.

Chapter 2 of this thesis describes the details the method which uses a novel theo-

retical approach for the linearization of the system response. Some speculation about

the possible implications of this are considered in the next section.

1.7 Implications for Clinical Quality Assurance

The development of a method to measure DQE of any system will enable the adoption

of DQE measurements in to the quality assurance regime which will have numerous
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benefits. One specific benefit will be the greater general awareness among clinical

health providers of the DQE, and its importance as a metric that objectively quantifies

the dose efficiency of digital radiography systems. This will help providers understand

the difference between high- and low-performance systems in terms of impacts on

patient dose.

Increased awareness will insure DQE has a greater bearing on purchase decisions

which will compel manufacturers to make sure the DQE is as good as it can be in

order to be competitive. Improvements in the DQE will improve overall dose effi-

ciency of systems and thereby allow for reduced patient doses. As a specific example

of the potential benefits, consider that globally there are approximately 138 million

x-ray (radiographic) procedures done annually [1]. If an average dose of 0.25 mSv

per procedure is assumed, and this can be reduced by a modest 10% through more

discriminating purchase decisions based on DQE specifications, and QA programs

that target low-DQE systems for servicing, the population dose can be reduced by

approximately 3,450 Sv per year. The average lifetime risk of fatal cancer is some-

where between 3% and 5% per Sievert [10], which implies that approximately 200

premature deaths caused by x-ray procedures could be prevented world wide!

In addition to improved patient safety, routine testing of DQE will enable evidence-

based service maintenance and end of life decisions for x-ray detector equipment. The

decision to replace a detector could be based on measurements of the DQE, rather

then on pressures from vendors about image quality and life expectancy. This could

result in tremendous savings if equipment life could be extended by demonstrating,

through DQE testing, that system performance is still adequate.
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Chapter 2

A method to measure the DQE in

a clinical setting

This chapter consists of a manuscript ready to be submitted for publication, authored

by M. McDonald, H.K. Kim and I.A. Cunningham.

2.1 Introduction

The potential biological risks associated with exposure to ionizing radiation makes it

critical that diagnostic x ray imaging systems be designed and maintained to produce

the best possible images for a given x-ray exposure. To achieve this, regulatory pro-

grams often establish acceptable levels of radiation exposure for common procedures

and image-quality tests are designed to evaluate selected performance-based tasks.

While scientific and professional communities have made these tests more quantita-

tive than in the pre-digital era, [1, 2, 3, 4] it is widely recognized that x ray systems

produce the best possible image quality in terms of image signal-to-noise ratio (SNR)

only when the detective quantum efficiency (DQE) [5, 6] is as close to unity as possible

at all spatial frequencies of importance.

The DQE describes the equivalent quantum efficiency [5] of an x ray detector and
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is a surrogate measure of the detector “dose efficiency”. [7, 8] In addition, since the

DQE is proportional to the noise-equivalent quanta (NEQ) which has fundamental

importance for the description of radiographic imaging systems as it describes the

performance of an ideal observer under certain noise-limited conditions, [9, 10, 11] it

is therefore possibly the best indicator of system performance we have.

An expression for the DQE is given by: [5, 7]

DQE(u) =
XQoG

2 |T(u)|2

W(u)
=

d̄2 |T(u)|2

XQoW(u)
(2.1)

where X [mR] is the exposure incident on the detector and projected into the image

plane, Qo [quanta/mm2/mR] is the number of x ray quanta in the beam per unit

exposure, G is the system gain relating q̄, the average number of incident quanta

per unit area where q̄ = XQo, to d̄, the corresponding average dark-subtracted pixel

value, and W(u) is the associated image Wiener noise power spectrum (NPS). This

expression is valid for linear and shift-invariant imaging systems, and was adopted by

the International Electotechnical Commission (IEC) in a standard method for DQE

testing with the substitution XQo = q̄ = Wq̄(u) as the Wiener NPS of the incident

Poisson-distributed quanta in IEC 62220-1. [12]

While the DQE is required for regulatory compliance for new products, and the

potential benefits from testing and monitoring the DQE seem obvious for ensuring and

documenting optimal system performance, it is part of clinical quality assurance pro-

grams in only a small number of leading-edge facilities. [13, 14, 15] There are several

reasons for this. For example, DQE measurements generally require an environment

where x ray exposure conditions can be controlled and monitored, and clinical in-

struments cannot always be removed from use for the time it takes to perform DQE

testing. An additional impediment for many systems is that while an assessment of

the DQE requires access to linear (or linearized [16, 17, 18]) image data, manufac-
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turers often implement non-linear image-processing to give images a preferred look.

In many cases, these algorithms are considered proprietary and not disclosed to the

user, making it difficult or impossible to extract the required linear image data. In

addition, they may incorporate adaptive noise-reduction algorithms and automatic

exposure control features that depend on certain patient features or exposure condi-

tions. This means both G and T(u) may be functions of unknown parameters and as

a result the system response may be adaptive and vary from one exposure to another,

and possibly from one region to another in a single image. These confounding con-

ditions make it difficult or impossible in many cases to perform standards-compliant

DQE testing.

In this chapter, a method is described for measuring the DQE that can be im-

plemented on both linear and non-linear systems. It differs to a standards-based

method (IEC) in two ways: 1) image data is linearized using what is called a “neutral-

attenuator” method; and 2) a semi-transparent edge with a modest attenuation (15-

20%) is used to determine the small-signal MTF. Since the analysis uses measurements

of only low-contrast features in otherwise uniform images, even non-linear or adaptive

image-processing is approximately linear (essentially a first-order Taylor expansion of

T(u) in terms of X). This linearized small-signal (LSS) approach is validated by

comparing the LSS DQE obtained using both processed (non-linear) and raw (linear)

image data with a standards-compliant DQE on the same system.
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2.2 Theory

2.2.1 Linearizing System Response: the Neutral-Attenuator

Method

For an ideal linear detector, the average dark-subtracted pixel value d̄ is proportional

to the average x ray energy deposited in the pixel, Ed [keV]:

d̄ = kEd = kaÊ, (2.2)

where k [keV−1] is a constant of proportionality, a [mm2] is the pixel area, Ê [keV mm−2]

is the area density of deposited energy given by

Ê = q̄Eq = q̄

ˆ kV

0

s(E)α(E)Ea(E)dE, (2.3)

q̄ [mm−2] describes a uniform Poisson distribution of x ray quanta incident on the

detector, Eq [keV] is the average energy deposited per incident x ray photon, s(E) is

the normalized x ray spectrum where
´ kV

0
s(E)dE = 1, α(E) is the detector quantum

efficiency, and Ea(E) [keV] is the average x ray energy deposited in the detector by

a photon having energy E.

The fundamental measurement of all x ray detectors is directly related to de-

posited energy Ed where Ed = aq̄Eq, and digital post-processing algorithms act on

this quantity. It therefore seems reasonable to express the average pixel value of

both linear and non-linear systems more generally in the form d̄ = f(Ed). A key

benefit of this representation is that the function f will normally be well behaved

over the useful range of exposures, such as a constant of proportionality or a log

transformation. A robust inverse transformation can therefore be defined such that

Eq = 1
aq̄
f−1(d̄) ≡ f−1

q (d̄) which can be determined by mapping Eq values as a function
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of d, giving a linearized pixel value d̄L = kLaq̄f
−1
q (d̄) where kL is a new constant of

proportionality.

The form of f−1
q could be obtained by attenuating a beam with a specified ma-

terial if not for beam-hardening effects, although it may be possible to construct an

attenuator that would attenuate all energies by the same fraction by combining two

or more materials that do not have K-edge energies in the useful energy range. As an

alternative, we use a material having linear attenuation coefficient µ(E) [cm−1] and

thickness t [cm] combined with a theoretical correction for beam hardening. With

this approach, Eq becomes a function of attenuator thickness t:

Eq(t) =

ˆ kV

0

s(E)α(E)Ea(E)e−µ(E)tdE. (2.4)

The shape of f−1
q (d̄) is then determined by plotting measured pixel values d̄ as a

function of Eq(t) determined theoretically from Eq. (2.4). This linearization transfor-

mation is used to convert the series of images with average pixel value d̄ into images

with average linearized pixel value d̄L.

2.2.2 Linearized Small-Signal (LSS) MTF

The linearized small-signal MTF is determined using a semi-transparent slanted-edge

method [19, 20, 21, 22] with the edge thickness chosen to attenuate the primary

beam by 15 - 20%. The small attenuation is necessary to avoid a problem on some

systems where low exposure values are truncated to zero, which would cause loss of

information about PSF tails.

Use of a semi-transparent edge introduces a complication caused by scatter emitted

from the edge that may contribute to the measured profile. Based on the work of

Neitzel et. al [21], it can be shown that an MTF measured using the semi-transparent

edge method, TS(u), is related to the true MTF, T(u), by
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TS(u) ≈ T(u)

{
1

1 + γ/β
+

1

1− β/γ
S(u)

}
(2.5)

where β is the edge-attenuation factor, γ is the edge-scatter-to-primary ratio in x-ray

intensity at the image plane behind the edge, and S(u) is the Fourier transform of the

(normalized) scatter point-spread function. In practise, γ decreases with increasing

detector distance and an accurate MTF measurement is obtained by choosing a dis-

tance that ensures γ � β. Copper was chosen as the edge material as the majority

of x-ray interactions are photoelectric and the resulting characteristic emissions have

a very low energy (∼9.0 keV), thereby minimizing the effect caused by edge scatter.

2.2.3 Linearized Small-Signal DQE

Using linearized images to determine the linearized small-signal MTF TL(u) and NPS

WL(u), gives the small-signal DQE equation assumes the familiar form:

DQEL(u) =
d̄2

L|TL(u)|2

XQoWL(u)
. (2.6)

2.3 Detector Glare

Detector glare results from large area scattering of x rays, electrons and optical pho-

tons [23]. This may result in long-range tails in the system PSF and scales with q̄

for uniform exposures of the detector. This causes a complication when determining

system gain G in Eq. 2.1 using the LSS method due to the fact that the steps cover

only a small fraction of the detector making the glare component approximately con-

stant in each step. It is therefore useful to write d̄ = d̄s + d̄g where d̄g is the glare

component and scales with d̄s for uniform exposures. Accordingly, it is convenient to

separate the system gain into two terms:
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G =
d

q
=
ds
q

+
dg
q

= Gs +Gg.

Gain G is the true system gain and could be measured by adjusting the intensity

of a uniform exposure, while Gs is the gain determined using the LSS method where

the glare term is approximately constant.

In Fig. 2.1a the linearization of a linear system with glare is shown. The true gain

of the system G is the ratio of pixel value d, to measured q. Theory does not account

for glare, (dg=0), and thus predicts that the measured pixel value should be ds and

the gain should be Gs. The discrepancy means that the response measured in the

LSS method will therefore have slope Gs and offset dg. As a consequence, noise in

linearized images will be increased by the factor |Gs/G|2, and noise measured by the

LSS method will be given by:

WL(u) =

∣∣∣∣ GGs

∣∣∣∣2 W(u).

Fig. 2.1b shows the linearization of a hypothetical non-linear system. The system

has a gain of G at the point of measurement. The gain of the linearized system

response is 1/Gs, where again Gs is the gain of the system at the point of measurement

in the absence of glare.

2.4 Methods

The linearized small-signal DQE method was implemented using images from a Gen-

eral Electric Revolution QX/i digital radiography flat panel detector. This system

provides both “processed” and “raw” images for each exposure. The processed images

have an inverted gray scale and some edge enhancement that is based on user set-

tings with an unknown algorithm and cannot be completely disabled. The raw images

have a linear response and no edge enhancement. These differences are illustrated



29

Initial Image Data Linearized Image Data

0 q
0

ds

d

Detector incident x-ray quanta, q̄ [mm−2]

P
ix
el

V
a
lu
e,

d̄

G
s

G

0 q

0

d

Detector incident x-ray quanta, q̄ [mm−2]

L
in
ea
ri
ze
d
P
ix
el

V
a
lu
e,

d̂

1/G
s

1/G

(a) Linear system

0 q
0

d

Detector incident x-ray quanta, q̄ [mm−2]

P
ix
el

V
a
lu
e,

d̄

G

0 q

0

d

Detector incident x-ray quanta, q̄ [mm−2]

L
in
ea
ri
ze
d
P
ix
el

V
a
lu
e,

d̂

1/G
s

(b) Non-linear system

Figure 2.1: Linearization of the system from initial response, to linearized response
for (a) a linear system with glare and (b) a hypothetical non-linear system.
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Figure 2.2: Images of a copper step wedge and corresponding profiles of pixel values.
Three different protocols are shown: raw (linear), abdominal-AP (LEdge=7), and the
custom setting used in these experiments (LEdge=1) .

in Fig. 2.2 which shows profiles through images of a copper step-wedge attenuator.

The small-signal MTF and DQE were determined using both raw and processed im-

ages, and validated by comparing with separate MTF and DQE measurements made

following the IEC standard[12] using raw images.

2.4.1 Linearizing System Gain

The linearization transformation f−1
q was determined using measured pixel values d̄

and theoretical Eq(t) values from Eq. (2.4) for known thicknesses t of copper shim

stock (forming a stepwedge with nominal thicknesses 0.025, 0.051, 0.152, 0.254 and

0.457 mm and with a nominal accuracy of 10% stated by the supplier[24]) for an RQA-

5 spectrum (70 kV, 21 mm added Al and a verified HVL of 7.1 mm Al). Copper linear

attenuation coefficients µ were obtained from the NIST database [25] using a copper

density of 8.96 g/cm3.

The pixel value measured using the copper shim can be inflated by scatter gener-

ated in the attenuator. A simple model of the measured pixel value is given by:
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d = dp + de.

Where dp is the contribution to pixel value of the primary transmitted x-ray beam,

and de is the contribution from scatter. The value of d approaches the value of dp as

de approaches zero which occurs as the distance of the attenuator from the detector

is increased. The error in the measured pixel value is given by:

d− dp
dp

=
de

dp
= γ.

The value of γ can be measured as function of distance by gradually increasing

the distance of an attenuator from the detector and measuring the attenuated pixel

value. The attenuated pixel value is d, and dp is the value of d which is no longer

changing with distance. The value of γ was measured for a .018” (.457 mm) thick

copper shim and is shown in Fig. 2.3. This is the thickest copper step and will provide

a worst case scenario of the scatter-to-primary ratio. For the measurement of f−1
q ,

the copper was placed at a distance of 200 mm from the detector cover where the

error in pixel value due to scatter is less then 0.5%.

The detector quantum efficiency α was estimated as the probability of interaction

assuming 0.471 g/cm2 of CsI and a 1 mm thickness. The form of f−1
q was determined

from a second-order polynomial fit of d̄ as a function of Êq. The accuracy of this

method is dependent on having an x-ray spectrum with a half-value layer (HVL) that

accurately conforms to the RQA-5 standard, and copper steps of known thickness.

The HVL was measured and confirmed to be within 1% of the nominal 7.10-mm Al

value. Copper thicknesses were measured with a micrometer and verified to agree

with nominal values ±0.003 mm (the accuracy of the measurement). A discussion on

the accuracy of the method is included in the results section. The neutral-attenuator

method was validated by verifying that f−1
q is a linear transformation when deter-
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Figure 2.3: Scatter-to-primary ratio for copper shim as a function of attenuator dis-
tance from detector cover for the thicknesses shown.

mined using raw image data.

2.4.2 Small-Signal MTF

The small-signal MTF edge was created from 0.004” (0.102 mm) copper with a care-

fully machined edge. While use of thin copper shim makes the method less sensitive

to rounded corners on the edge profile than a thick edge, a rounded profile could still

reduce the MTF at high spatial frequencies. A worst case estimate of the error in

TL(u) due to scatter from the copper edge was made using Eq. (2.5) with the as-

sumption that S(u > 0) = 0. The scatter-to-primary fraction γ for the copper edge

was measured as function of edge-detector distance, and the data is plotted in Fig.

2.3. The results for selected distances are shown in Table 2.1. For a distance of 200

mm, the value of γ was determined to be approximately .1%, thereby resulting in less

then 1% inflation of the MTF. This provides an upper bound on the distance that

it’s necessary to measure the MTF to eliminate scatter. To determine the optimal

distance, the measurement was made with at 0, 50, 100, and 200 mm. For each

distance the accuracy of the small-signal MTF was validated by comparison with an
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Edge-detector distance [mm] γ β 1
1+γ/β

+ 1
1−β/γS(u)

0 .009 .21 1.05

50 .006 .21 1.03

100 .003 .21 1.01

200 .001 .21 1.005

Table 2.1: The error in MTF due to scatter is calculated as a function of edge-detector
distance for a .004” (0.1016 mm) copper edge. This is a worst case scenario, where
the assumption is that S(u > 0) = 0. For the error in MTF due to scatter to be less
then 1% the edge must be placed >200 mm from the detector cover.

IEC MTF [12] using a 3-mm tungsten edge and raw (linear) dark-subtracted, but not

linearized image data. A 100-mm region of interest (ROI) spanning across the edge

by 25 mm along the edge was used to determine the MTF.

2.4.3 Linearized Small-Signal MTF

The linearized small-signal (LSS) MTF is similar to the small-signal MTF but uses

linearized image data. Validation of the LSS MTF was obtained by comparing the

MTF obtained using raw-image data with linearized image data.

2.4.4 NPS and DQE

The frequency-dependent NPS was calculated using an open-field area in four images.

The IEC value of Qo for the RQA-5 spectrum was used. The linearized small-signal

DQE obtained using Eq. (2.6) with both raw (linear) and processed (non-linear)

image data was compared with an IEC 62220-1 [12] compliant DQE obtained using

the 3-mm tungsten edge and a four open-field images for the calculation of the NPS.
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2.5 Results

2.5.1 System Gain

A comparison of theoretical Êq values from Eq. (2.4) with measured pixel values d̄

from raw images is shown as a function of copper thickness in Fig. 2.4. For this test,

the copper was placed in two configurations: one in which the stepwedge is centered in

the image, and one in which it is placed at the image edge. While there is reasonably

good agreement with the theoretical deposited energy in both cases, pixel values

become slightly inflated with increasing copper thickness. It was found that this

phenomenon is caused by veiling glare, confirmed by placing the copper in a “narrow

beam” geometry wherein the x-ray beam was tightly collimated to the copper pieces.

In this configuration the discrepancy between measured pixel values and theoretical

deposited energy was greatly reduced [26]. For the “centered” configuration, there is

an approximately 5% additive term from glare which is consistent with the 5% low-

frequency drop observed in the IEC-compliant MTF. For the “edge” measurement,

the additive term is of the order 2-3% where reduced glare is expected. It is important

to note that the small disagreement in Fig. 2.4 is not an error. Rather, it shows that

for linear image data, pixel values are proportional to theoretical Êq values plus a

component due to glare in the detector. For the measurement f−1
q , the copper steps

were placed in the “edge” configuration in order to take advantage of the reduced

glare.

The transformation to linearized pixel value, f−1
q is shown in Fig. 2.5 for both raw

and processed images. As expected, the transformation is a straight line for the raw

image data. The fact that it does not pass through the origin is due to the 2-3% glare

offset. (It is interesting to note, therefore, that by using f−1
q to linearize image data,

the linearized image is approximately corrected for detector glare. This observation

is true only for images containing very little image contrast, such as is used in this
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Figure 2.4: Comparison of normalized theoretical Êq(t) values with normalized d̄
values determined from linear image data as a function of copper thickness t. The
“centered” data is the configuration in which copper is centered in the image, while
“edge” refers to the configuration in which copper is placed at the image edge. In
each case, the small difference in increasing thickness is due to a offset in pixel value
caused by detector glare.

study, where detector glare is approximately uniform across the image). The result

of this is an increase in the system gain by 2-3% which may introduce an error by

this amount in the DQE. The processed image data shows an inverted gray scale. In

both cases, the transformation is well behaved as expected.

2.5.2 Small-Signal MTF

In Fig. 2.6a the small-signal MTF using linear dark-subtracted, flat-field corrected

data is shown for the four edge-to-detector-cover distances tested. The MTF using

the IEC compatible opaque edge is shown in Fig. 2.6b for the same distances. In both

figures an effect of declining MTF with distance can be observed. The 0 mm and 50

mm measurements are indistinguishable, however the measurement at 100 mm and

200 mm are in error by 5% and 18% respectively at 2.5 mm−1. This effect may be
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due to a penumbral blur resulting from off-axis x rays created by the finite focal-

spot, and scatter from beam hardening filtration. Fig. 2.7 compares the small-signal

MTF using linear image data with an IEC MTF for each distance tested. Excellent

agreement is seen for the 100 mm and 200 mm data. Good agreement is seen in the

1 mm and 50 mm data except at low frequencies where, as was anticipated, there is

a small but non-trivial increase in the small-signal MTF. A distance of 50 mm was

selected to be used for the measurement of DQE. An explanation of this choice is left

to the discussion section.
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Figure 2.6: Comparison of the small-signal MTF measured using the semi-transparent
edge with a conventional IEC method when the edge is placed 0, 50, 100 and 200 mm
from the detector cover, using linear image data.

2.5.3 Linearized Small-Signal MTF

Figure 2.8 shows a comparison of the linearized small-signal MTF, obtained using

both raw and processed image data, with an IEC-compliant MTF with the exception

that a 15 mm window was used rather than 100 mm in the MTF measurement. This

was to reduce the effects of x-ray beam inhomogeneity in the calculation of MTF from

(linearized) processed data, where no flat-field corrections could be performed. Using

a small window truncates the LSF tails, and thereby decreases the low-frequency

drop. With this change, the small-signal and IEC results are equivalent. However,

since there is no low-frequency drop, this means the LSS MTF is scaled up by the

amount of the low-frequency drop which is equal to the glare fraction when it is

normalized to unity at zero frequency.

Each curve in Fig. 2.8 is an average based on five realizations of the measurement.

The small-signal MTF obtained with processed image data shows evidence of edge

enhancement.
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Figure 2.7: Comparison of the small-signal MTF with an IEC MTF with the edge
placed 0, 50, 100 and 200 mm from the detector cover, using linear image data.
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Figure 2.8: Comparison of the LSS-MTF measured from both raw and processed
image data with a conventional (IEC) MTF obtained using raw image data. The
LSS-MTF does not show the low-frequency drop but does show the effect of edge
enhancement in the processed images. All curves are an average of five realizations
of the respective measurements.

2.5.4 NPS and DQE

Figure 2.9 shows a comparison of the Wiener NPS (normalized by squared pixel

value) obtained using the linearized small-signal approach, using both raw and pro-

cessed image data, with an IEC NPS. Each curve is the result of averaging five

realizations of the measurement. The uncertainty bars represent the standard error

for each frequency of the LSS raw and IEC measurements. The error bars overlap

for the majority of frequencies however the measurement from raw data has under-

gone linearization with f−1
q , and appears to be a few percent greater then the IEC

measurement which is consistent with the increase in system gain of 2-3%. The NPS

from processed data is substantially greater which indicates that image-processing

has increased noise. Fig. 2.10 compares the results of the IEC DQE measurement

with the LSS method, (both are based on five realizations of the measurement). In

this test, the semi-transparent edge was 50 mm from the detector cover. The IEC

method requires the opaque edge to be as close to the image plane as physically pos-
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Figure 2.9: Wiener NPS, normalized by squared pixel value, as determined from raw
and processed images. All curves are an average of five realizations of the respective
measurements.

sible, and therefore a distance of 0 mm was used from the edge to detector cover. All

MTF calculations used a 15 mm window. In this configuration, the raw and processed

LSS measurements agree well with one another, however they underestimate the IEC

measurement by a few percent. The LSS raw measurement is on average 5% less then

the IEC measurement. The uncertainty bars represent the standard error for each

frequency of the LSS raw measurement. For clarity in the figure, no other error bars

are shown, however the uncertainty in the IEC measurement overlaps that of the LSS

raw measurement for the majority of frequencies.

2.5.5 Error Analysis

Accuracy of the DQE results will depend on how accurately the parameters required

for Eq. (2.4) are known. These include the spectral shape s, quantum efficiency

α which depends on detector material and thickness, and mass loading ρt of cop-

per. The relative change in DQE values resulting from a change in each parameter,
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Figure 2.10: DQE determined from raw and processed images. The conventional
IEC measurement from linear image data is shown for comparison. All curves are an
average of five realizations of the respective measurements. Uncertainty bars for the
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Figure 2.11: Analysis of error in DQE value due to uncertainty in parameter x, where
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based detectors.
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Parameter (x) ∆DQE/DQE
∆x/x

Required Accuracy

x-ray beam HVL 3.4 0.6%

Copper step thicknesses -2.1 1%

Detector mass loading (Se) 0.0022 900%

Detector mass loading (CsI) 0.041 48%

Table 2.2: Fractional change in DQE values relative to a change in each parameter
x. The third column shows the required accuracy of each parameter to ensure a
maximum 2% effect on the DQE.

∆DQE/DQE/∆x/x with x representing the parameter, was determined by varying each

parameter in Eq. (2.4) as illustrated in Fig. 2.11 and Table 2.2.

The IEC standard claims that the DQE can be measured to an accuracy of 5%. To

achieve this accuracy using the linearized neutral attenuator approach, it is required

that the error from any one parameter must not exceed 2%. It is shown that to achieve

this, the HVL must agree with the standard value within 0.6%, and the thickness of

copper steps must be accurate to approximately 1% of the larger step thickness. It

was also shown that 50% change in detector material thickness resulted in less than a

2% change in DQE. However, incorrectly assuming a Se detector when actually using

a CsI detector caused a 10% error.

2.6 Discussion

2.6.1 System Gain

The neutral-attenuator method converts raw and processed to proportional linear

deposited energy. If glare is present, it increases the system gain in the linearized

response by the glare fraction. On this system there is a glare component of approx-

imately 5% over the majority of the image except very near the image edge where

it reduces to 2-3%. For the measurement of system response, the copper was near
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the image edge thus resulting in an increase of system gain by 2-3% in the linearized

response.

2.6.2 MTF

The use of a semi-transparent edge to measure MTF introduces the problem of scatter

from the edge. This is seen as the inflation at low-frequencies in the small-signal MTF.

To minimize the effect of scatter, it was found that the measurement must be made

with the edge> 100 mm from the detector cover. However, there is a simultaneous

problem of the observed drop in the MTF as distance increases, possibly due to off-axis

x-rays and the resulting penumbral blur. For a 200 mm edge-detector distance and

using an IEC edge this error was approximately 18% @ 2.5 mm−1. If it’s assumed that

this reduction in MTF applies equally to the small-signal measurements, for which

there is good evidence in the generally good agreement of IEC (no scatter) and small-

signal MTF measurement for each of the edge-detector distances considered, making

the small-signal measurement at 200 mm would create an unacceptable level of error.

Some scatter must therefore be tolerated and the measurement of small-signal MTF

made at a more moderate distance. In this case the measurement was made at 50

mm. This greatly reduces (but does not eliminate) scatter and the resulting inflation

of MTF at low-frequencies, however the greater detector distance with respect to the

IEC measurement (which by definition is made at 0 mm distance), could result in

a small reduction in small-signal MTF. This effect is presumed to be present but at

a distance of 50 mm, is not perceptible. Additionally the use of the small 15 mm

window for the calculation of both small-signal and IEC MTF (with the resulting loss

of low-frequency drop), has reduced the effects of scatter.
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2.6.3 NPS and DQE

The normalized NPS from linearized raw data appears to be greater then the nor-

malized NPS by a few percent. It was demonstrated in the theory section that glare

should result in an increase in the system gain and NPS. The 5% difference observed

here is consistent with the increase in system gain of 2-3%, which is squared in the

NPS. The increase in normalized NPS is responsible for the small difference that’s seen

in IEC and LSS method DQE measurements. The difference is about 5% therefore

this is the accuracy of the LSS method on this system.

The LSS processed DQE measurement agrees extremely well with the LSS raw

DQE measurement which leads to the observation that image-processing does not

increase the DQE.

2.6.4 Error Analysis

Some implications of the error analysis on the uncertainty in the DQE results are

now considered. The copper step thickness must be known to within 1% to achieve

less then 2% error in the DQE, although the stated uncertainty by the manufacturer

is 10%, measurement of copper thickness with a micrometer with an accuracy of

±.003 mm where identical to the nominal values within this measurement accuracy.

Given this accuracy, the uncertainty in the thickness of the .025 mm (thinnest) step

is still 10%, however for the thicker steps which are composed of thicker copper, this

uncertainty is improved substantially. This provides confidence that the accuracy is

better then the manufacturer suggests, and an accuracy of 1% is therefore not an

unreasonable assumption. The x-ray beam HVL is known to be within 1% of the

nominal 7.1 mm, this uncertainty is slightly greater then the .6% predicted by the

error analysis that’s required to keep the error in DQE under 2% however it results

only in a small increase to 3.4%. The other source of error, the detector mass loading

is only required to be known within approximately 50% for CsI, which provides a wide
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margin for error, and the estimate used is almost certainly within this range. The total

uncertainty from these contributing factors is approximately 6%. The measurement

of DQE from raw data is within 6% of the IEC (true) measurement, therefore within

the uncertainty of the measurement these are the same.

2.7 Conclusions

A new method has been developed to measure the DQE of non-linear imaging sys-

tems. The method uses the concept of a “neutral attenuator” to map the response of

the system as a function of theoretical deposited energy and thus linearize the image

data. It is the first method to allow the DQE measurement to be made so that all

components of the equation are captured from a single static image, which permits

the measurement to be made on any system, linear, non-linear, and those that employ

adaptive processing. The method was validated on CsI-based digital flat panel detec-

tor using linear and processed image data. The results where within a few percent of

the conventional IEC DQE measurement. The small discrepancy was caused by glare

and the increased system gain resulting from linearization to theoretical deposited

energy. The accuracy is expected to be improved on systems where glare is not as

prevalent.

The non-availability of linear data is the primary technical impedance to regular

monitoring of the DQE in a clinical setting. The linearized small-signal DQE method

described here solves this problem and will allow DQE measurements to be incor-

porated into routine quality assurance programs for constancy testing, acceptance

testing, and end of life decision making.
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Chapter 3

Conclusions and Future Work

3.1 Conclusions

The motivation of this research is to develop a method to assess the performance

and dose efficiency of x-ray imaging systems, irrespective of the system response and

processing of the available data. The concept of the neutral-attenuator method was

introduced as a means to determine the response of the system and thereby linearize

non-linear data and calculate the DQE, even in the presence of adaptive non-linear

image-processing. The method was validated on a digital flat panel x ray detector

with an adaptive non-linear response which implemented edge-enhancement. The

following specific conclusions where made from this work:

1. Using the LSS method, it is possible to measure the DQE using both the raw

linear and processed non-linear data to within 5% of a conventional IEC mea-

surement. This is believed to be sufficient for the quality assurance purposes of

detecting meaningful changes in system performance, acceptance testing, and

evaluating the performance of older equipment for end-of-life decisions making.

2. The image-processing on this system did not increase the DQE. The ability to

measure DQE using data that has been undergone extensive processing confirms

49



50

that the DQE is a robust measure of performance, and an ideal candidate for

the measurement of performance in clinical quality assurance.

In addition, the following observations where made:

1. Gray-scale inversion of the system response, applied by the manufacturer when

computing the processed images, did not affect DQE results; and

2. Edge enhancement, applied by the manufacturer to the processed images, af-

fected the MTF and NPS showing an increase in both at mid frequencies, but

did not affect the DQE, consistent with expectations for linear processing of

image data.

This method solves the problem of measuring the DQE when linear data is unavail-

able. It is anticipated that this will make DQE measurements more accessible to

those without advanced technical knowledge who wish to measure DQE in a clinical

setting as part of routine quality assurance.

3.1.1 Limitations

Several limitations of the theory and method presented in this thesis have been iden-

tified. These are divided into three categories:

1. Glare and it’s effects on the measurement of the system response;

2. Issues pertaining to the use of low-contrast attenuators for test phantoms; and

3. Limitations on the types of image-processing that can be successfully circum-

vented by this method.

3.1.1.1 Glare

The single biggest limitation on the methods described in this thesis is the glare that

is present in some detectors. Glare is due to long-range scattering of x rays and
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optical photons and appears as an offset in measured pixel values that is additive to

the contribution from theoretical deposited energy. This is a problem because the

neutral-attenuator method maps measured pixel values as a function of theoretical

deposited energy and therefore does not consider additional offsets such as glare. In

Chapter 2 this resulted in an increase in the gain of the system in the linearized system

response which was responsible for differences seen in the DQE calculated using LSS

and IEC methods. The test system used in this thesis is thought to represents a

worst-case scenario for the amount of glare that would be encountered on a digital

system.

3.1.1.2 Scatter

The next problem is scatter from low-contrast test objects. Scatter is created by any

low-contrast object in the x ray beam, and the effect will be to add to the transmitted

x ray beam and impart additional energy to the detector. The low-contrast objects in

this study are made of copper, and therefore are subject to this effect. To reduce or

eliminate the effects of scatter, measurements using these test objects must be made

further from the detector image plane where inverse-square effects reduce scattered

radiation. This is effective at reducing scatter but it’s not desirable if for instance

these methods where to be implemented in a compact test device for easy use in

clinical applications due to the space requirements. It is also problematic for the

small-signal MTF measurement, because additional effects of distance such as off-axis

x rays result in penumbral blur. This limits the range at which the MTF measurement

can be made to small distances (≤5 cm), where scatter is still present. Scatter effects

on the MTF where further mitigated by employing a smaller window of data for the

system edge-response function, however this resulted in a loss of information about

the system low-frequency drop.
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3.1.1.3 Image-Processing

Finally, the techniques described will not be applicable to all types of image process-

ing. One example of this will likely be certain forms of active noise reduction. In

this technique, noise in low-contrast areas that the software perceives as containing

uniform intensity x rays will be suppressed by spatial smoothing of pixel values or

a similar technique. However, because this algorithm is not applied to noise in high

contrast areas of the image where the software perceives an object is present, a DQE

test will produce inflated, often nonsensical results [1].

3.2 Future Work

Some suggestions to address the current limitations of the method are now consid-

ered. These issues are considered individually in the same as order as the current

limitations.

3.2.1 Glare

Optical glare is part of the detector, therefore it is beyond the scope of this work to

suggest how it might be eliminated, however there are a number of ways the effects of it

might be mitigated. For instance, the fraction of the output measurement contributed

by glare is related to the total exposed detector area. For the GE XQ/i Revolution

detector used for this thesis, the relationship between the pixel value measured in the

centre of the image, and the physical area of the x ray beam on the detector is shown

in Fig 3.1. If it is assumed that the increase in pixel value due to an increase in beam

area is attributable entirely to glare, then the difference in glare fraction between a

very small beam size (approx. 5 cm x 5 cm) and a very large one (40 cm x 40 cm) is

of the order 12%, which is quite significant.

Using a smaller size of x ray beam (by collimation) would reduce the glare fraction



53

0 0.5 1 1.5 2

x 10
5

1150

1200

1250

1300

1350

1400

P
ix

el
 V

al
ue

Beam Area [mm2]

Figure 3.1: Pixel value measured (in image centre) on a GE XQ/i Revolution detector
exposed to a IEC RQA-5 spectrum (fixed exposure conditions) as a function of the x
ray beam area.

and improve the accuracy. Additionally, it can be seen that the glare is related to

the distance of the exposed detector area to the location of pixel value measurement,

that is, the contribution from areas further away is lower then the contribution from

nearby. Placing attenuators near the edge of the image would maximize the distance

over which scattered x ray and optical photons must travel from exposed detector

locations, thus minimizing glare.

3.2.2 Scatter

Not a great deal of scatter from low-contrast test objects, other then the measures

already taken, such as increasing the distance of the attenuator to the detector, and

using different materials for the test objects. One might suppose that a thin sheet of

tungsten (K-edge ˜70 keV) would be a good choice of material for the MTF edge due

to fewer photoelectric interactions. According to Neitzel [2], a 1 mm tungsten edge

will result in less then .1% error in the measured MTF for an RQA-5 which would
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be an improvement from the copper edge used in this study, however the relatively

high attenuation of this edge (> 95%) may be undesirable in a small-signal method.

The scatter performance of any given material as an MTF edge or as a material

for mapping of the system response must be evaluated empirically on a case-by-case

basis.

3.2.3 Image Processing

For the types of image processing that cannot be easily circumvented with the method,

the solution is to attempt to detect the processing and require the user to disable it.

Noise reduction for instance could be detected if nonsensical values of DQE, (DQE >

1) are calculated. Although it is counter to the design principle of data agnosticism,

this is one case where there is no other viable solution.
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